Table of contents
- Chapter I: One-dimensional variational problems
- Regularity of the minimals
- Examples
- The accessoric variational problem
- Extremal fields in the case n=1
- The Hamiltonian description
- Exercices for Chapter I
- Chapter II: Extremal fields and global minimals
- Global extremal fields
- An existence theorem
- Properties of global minimals
- Compactnes properties of global minimals
- Irrational rotation numbers, Mather sets
- Rational rotation numbers
- Exercices for Chapter II
- Chapter III: Discrete systems, Applications
- Monotone twist maps
- A discrete variational problem
- Three examples
- The standard map
- The Birkhoff billiard
- The dual billiard
- A second variational problem
- Minimal geodesics on the torus
- Hedlund's metric on the torus
- Exercices for Chapter III
- Added literature (- April 2002)
- Literature
- Index
|